PLACENTAL MICRORNA EXPRESSION

Daniel A. Enquobahrie, MD, PhD Associate Professor Department of Epidemiology March 24, 2016

danenq@uw.edu

DEPARTMENT OF EPIDEMIOLOGY

SCHOOL OF PUBLIC HEALTH • UNIVERSITY of WASHINGTON

***** Background

***** Placental miRNA expression

Circulating placenta-specific miRNAs

***** Opportunities and challenges

Background - MicroRNAs

NON-CODING RNAS

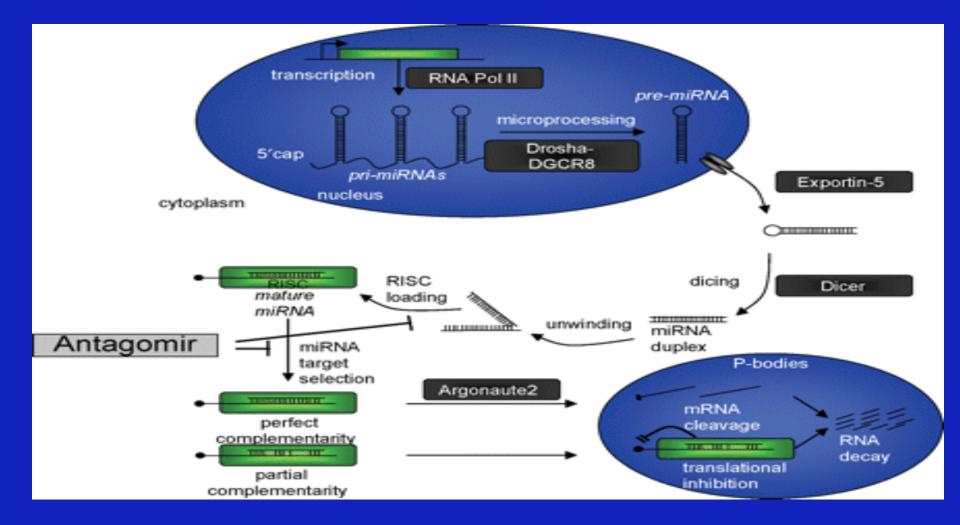
- × Human genome
 - + ~50-70% transcribed
 - + ~1-2% protein coding
 - + ~98% Noncoding
- × List growing

× Groups

- + Housekeeping: tRNAs, rRNA, Telomerase RNA, etc
- + Regulatory: miRNA, long ncRNA, Antisense-RNA, etc

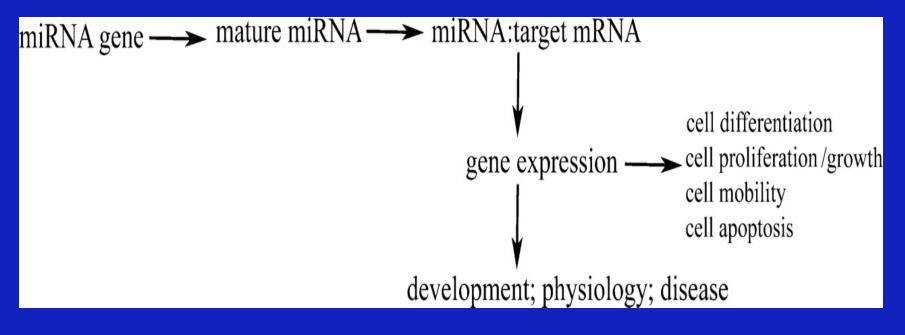
HISTORY

- × Discovery: *lin-4* (1993), C. elegans
- × Plants, RNAi research
- *** <u>http://www.mirbase.org/</u>** + 28,645 entries: Release 21 (June 2014)
- × ~2,500 miRNAs (human)
- **x** Explosion of research over the past decade



- × Small (~22 nucleotides), conserved
- Production regulation: mostly unknown, tissue or developmental stage specific (1/3)

× Location


- + Introns, exon UT, intergenic
- + Single or cluster
- Post transcription regulation, though recent reports of transcription regulation

BIOLOGY

Cardiovascular Research (2008) 79, 562-570

Physiol Genomics (2008), 33:139-147

POST TRANSCRIPTION REGULATION

 Gene expression regulation (1/3 genes)
 Target 3' UT seed regions of mRNA
 Multiple sites on each mRNA Vs same site on many mRNA

× Mechanisms

Inhibit translation of mRNA (non-perfect match)
 Promote mRNA degradation (perfect/near perfect match)
 miRNA mediated mRNA decay

MEASUREMENT/PROFILING

Profiling method	Workflow	Sensitivity	Specificity	Throughput	Absolute quantification /accuracy	Flexibility	Can identify novel miRNAs	Data analysis	Other
qRT-PCR	Reverse transcription Optional pre-amplification PCR	((+/++	(••••	2		Normalization
GeneChip microarrays	Biotin labeling Hybridization Staining Scanning	+	+	(+	+/	2		Various species on the same array
Oligonucleotide microarrays	Cy3 labeling Hybridization Scanning	+/++	+/++	(+	++		M	
Exiqon miRCURY microarrays	Hy3/Hy5 labeling Hybridization Mono- or dual-wavelength scanning	++	+	€	(†	++		M	LNA-capture probes Allows for either mono- or dual- wavelength scanning
nCounter Analysis System	In-solution hybridization (biotinylated capture probe and a miRNA-specific fluorescent reporter probe) Complexes immobilization and alignment Scanning	++	ŧ	ŧ	ŧ	++	8	×	Normalization
NextGen sequencing	3' Adaptor ligation 5' RT primer annealing 5' adapter ligation Reverse transcription PCR	([‡]	•	•	(†	•	3	D	Highest cost

J Cell Mol Med (2014), 18:371-390

***** miRBase

× miRWalk

x miRTarBase

***** Targetscan

NOMENCLATURE – CLASSIFICATION

Acronym	Meaning	Examples
3-Letter prefix	Species identification	hsa (Homo sapiens) cel (Caenorhabditis elegans)
pri-mir (lower case "r")	The primary miRNA transcript (see Figure 1)	pri-mir-1
pre-mir (lower case "r")	The precursor miRNA transcript resulting from processing of the primary transcript by the Drosha-DGCR8 complex (See Figure 1)	pre-mir-1
miR (upper case "R")	Mature miRNA	hsa-miR-1
-3p or -5p	Mature miRNA originating from the 3' or 5' end of the pre-miRNA, respectively	hsa-miR-10-3p hsa-miR-10-5p
a or b	Related, mature miRNA variants (i.e., differing by a nucleotide)	hsa-let 7a hsa-let 7b
-1, or -2	Identical mature miRNA sequences that originate from different genomic loci	hsa-miR-9-1 hsa-miR-9-2
miR* (miR-star)	"Passenger strand" ^b found at lower concentration, frequently degraded (retired after miRBase 16)	hsa-miR-9*
miR, miRNA, microRNA	Equivalent terms for a mature miRNA transcript used in the text of studies	

Am J Epidemiol (2014), 180, 140-152

TARGET IDENTIFICATION

Computational approaches
 + Complementarities
 × "seed region" of 2-8 nucleotides at 5' end

+ Thermodynamic stability of complex

+ Degree of conservation of orthologues target sites in the 3' UT across species

+Understanding pathophysiology

+Generating hypotheses (e.g. Gene & Env)

+ Biomarkers: prediction, prognosis, monitoring

+Therapeutic targets

Placental MiRNA Expression Preeclampsia

CENTER FOR PERINATAL STUDIES

× Multiple cohort and case-control studies

- + Cohort (>6,500): Omega study, Pregnancy Migraine Study
- + Case-control: Ferritin, Abruptio etc.

× Recruitment

- + Early pregnancy (7-8 weeks, first prenatal visit)
- + Eligibility/exclusion
- + Participation (>80%), Follow up (>96%), Data (92%)

× Data collection

- + Interview-adminstered QA, FFQ,
- + Blood (16wks, on average), urine, placenta, cord blood
- + Medical records

MICROARRAY EXPERIMENT

RNA extraction: Guanidinium TPC extraction method

RNA QC: UV spectrophotometry and gel electrophoresis

 Platform: custom microarray @ Ocean Ridge Biosciences

Confirmatory QRT-PCR

× Data normalized and log2 transformed

× Fold change, 1-way ANOVA, Clustering

x Targetscan (www.targetscan.com)

× Path analysis: KEGG and IPA

x Confirmatory qRT-PCR: Correlations

STUDY POPULATION CHARACTERISTICS

PE Cases (N=20)	Controls (N=20)
32.8	30.4
36.0	38.8
55.0	40.0
60.0	70.0
65	60
	(N=20) 32.8 36.0 55.0 60.0

*mean (otherwise %)

EXPRESSION MEASUREMENT

x 1,295 probes (human=854)

***** miRNAs with \geq 90% information (n=611)

x Differentially expressed miRNAs (n=8) (AFC>1.5, p-value <0.05)</p>

DIFFERENTIALLY EXPRESSED MICRORNAS

MicroRNA	Location	Fold change	P-value*
hsa-miR-328	16q22.1	-1.52	0.00033
hsa-miR-584	5q33.1	-1.64	0.00188
hsa-miR-210	11p15.5	1.53	0.00276
hsa-miR-139-5p	11q13.4	-2.27	0.00354
hsa-miR-500	Xp11.23	-1.52	0.00539
hsa-miR-1247	14q32.31	-1.52	0.00581
hsa-miR-34C-5p	11q23.1	-1.54	0.01059
hsa-miR-1	20q13.33	-1.56	0.01284

**ANOVA 1-Way p-values comparing expressions among preeclampsia cases and controls.

PREVIOUSLY REPORTED

x miR-210

+ Hypoxia, endothelial cell response, VEGF activities

x miR-1

+ Smooth muscle calcium signaling

miR-1247 (14q32.31 chromosomal cluster) + Conserved region with imprinted domain + Cluster (~40 miRNAs), embryonic/placental growth + Methylation region ~200kb upstream

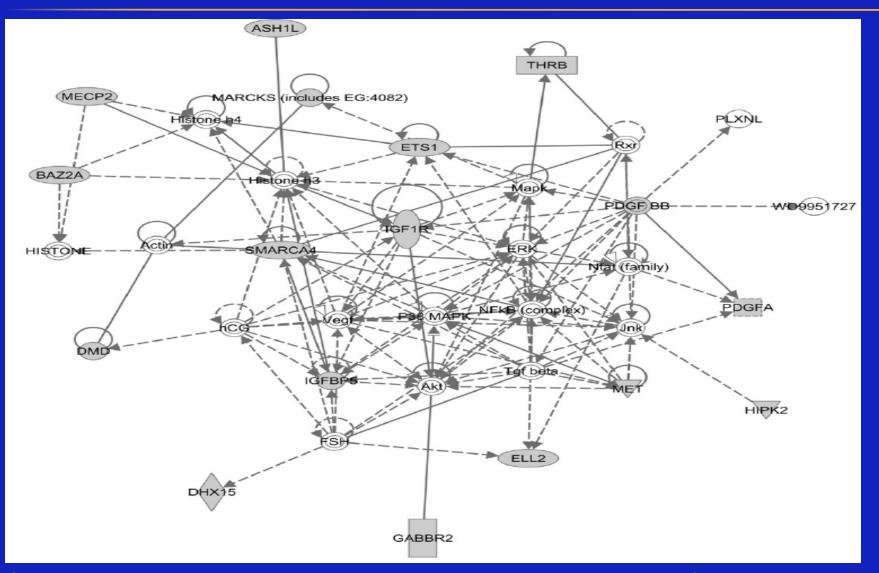
x miR-584

+ Binds to conserved 3' region on lactoferrin receptor

+ Immune activation, platelet aggregation

x miR-34c-5p

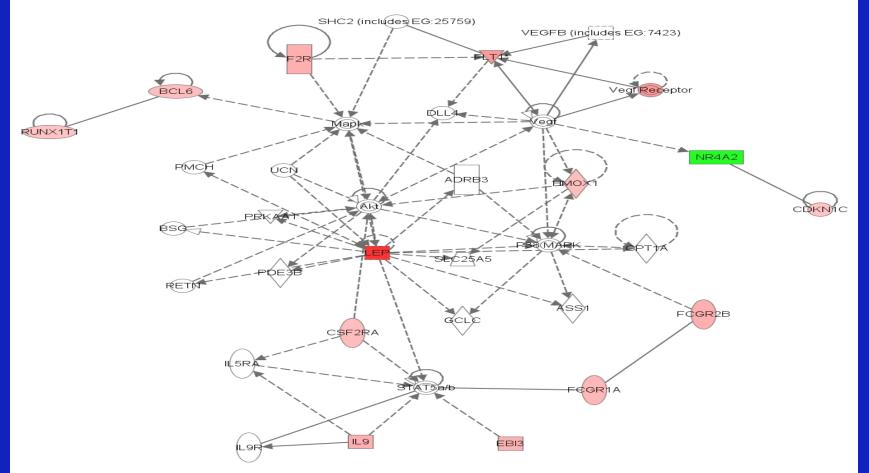
- + Family of miR-34b and miR-34c
- + Mediators of p53 dependent suppression of endometrial proliferation (cell cycle)
- + Endometriosis and preeclampsia (?)


GENE TARGETS

× 76 genes targeted by 2 or more DE microRNAs

× Functions

- + Organ system development (CVS/RS)
- + Immune dysfunction
- + Cell cycle
- + Cell signaling


Significant network (IPA)

Genetic disorder, immunological disease, cardiovascular system development and function (score=30) Enquobahrie et al, Am J Obstet Gynecol 2011

Network from the GE study

Network 2 : PEMarray_input_Fold Change - 2007-05-04 02:27 PM : PEMarray_input_Fold Change.txt

© 2000-2007 Ingenuity Systems, Inc. All rights reserved.

Cell death, cellular growth and proliferation, inflammatory disease

Am J Obstet Gynecol 2008;199:566 e1-11

SUMMARY

- Previously identified (miR-210, miR-1, and miRNA cluster at 14q32.31) and novel (miR-584 and miR-34c-5p) microRNAs differentially expressed
- Target genes participate in diverse pathophysiological processes with potential importance in preeclampsia (e.g. organ/system development, immunologic dysfunction)

Circulating Placenta-specific MicroRNAs

CIRCULATING MICRORNAS

Passive leakage (injury, inflammation, necrosis)
 + Extracellular miRNAs regulate vascular endothelium

Active secretion through cell-derived membrane vesicles (e.g. exosomes)
 + Adipocytes release exosomes that contain miRNAs (e.g. miR-16, -27a, 146b, -222)

Protein-miRNA complexes (e.g. HDL-AGO2)
 + Participate in intercellular communication

PLACENTA-SPECIFIC MICRORNAS

× C19MC – 19q13.41 miRNA cluster

- + Primate specific, expressed from the paternal allele
- + Expression increases from first to third trimester
- + Member miRNAs (e.g. miR-517) regulate cell proliferation, immune function and antiviral activity

× C14MC – 14q32 miRNA cluster

- + DLK-DI03 domain, maternally imprinted
- + Expression decreases from first to third trimester
- Member miRNAs (e.g. miR-379/410) regulate metabolic functions (glucose homeostasis and hepatic gene expression)

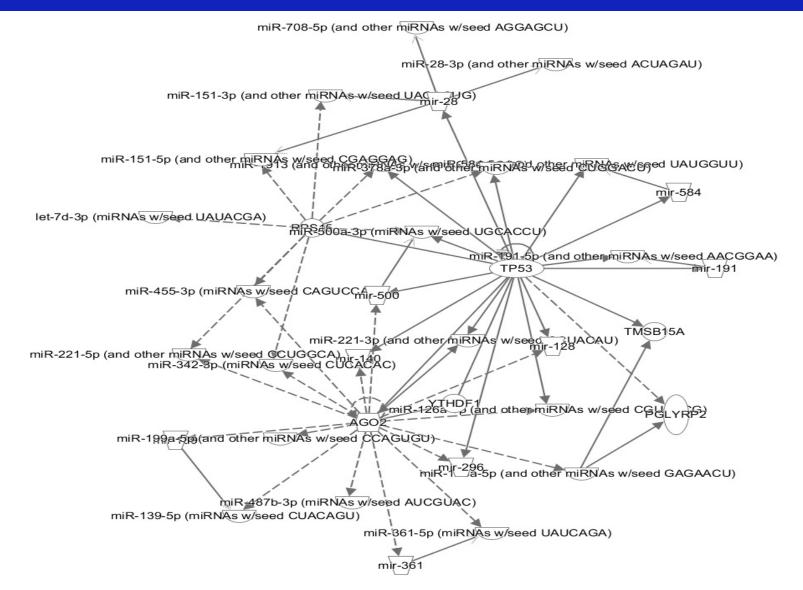
PLACENTA-SPECIFIC MICRORNAS

- × Have been identified in plasma or serum
- Both placental expression and circulating levels has been related to preeclampsia or intrauterine growth retardation
- Most of these studies were conducted in mid/late pregnancy or post-delivery

EARLY PREGNANCY CIRCULATING MICRORNAS

 Participants of the Omega Study (Seattle, WA) and POUCH (Pregnancy Outcomes and Community Health) Study (Michigan)

- Early (Omega, 8-20 weeks) to Mid (POUCH, 15-27 weeks) pregnancy blood collection
- Microarray and candidate miRNA profiling in relation to subsequent risk of preterm birth (primary outcome) and pre-pregnancy body mass index


CIRCULATING MICRORNAS AND BMI

 x 27 miRNAs were differentially expressed in relation to pre-pregnancy BMI in both Omega and POUCH cohorts

 Functions in regulation of organismal injury and abnormalities, reproductive system diseases, connective tissue disorders, and cancer

 Identified miRNAs included placenta-specific miRNAs in C14MC cluster (e.g. -377)

CIRCULATING MICRORNAS AND BMI

Opportunities and Challenges

OPPORTUNITIES

- × Research
 - + Stability, omnipresence, smaller size, smaller # (?)
 - + Uncovering gene expression regulation (DNA \rightarrow RNA \rightarrow Protein)
 - + Role of unknown genomic regions
 × e.g. miR-15, miR-16 at 13q14.3 in CLL, chromosome 9 (MI)
 - + Gene environment interactions

OPPORTUNITIES

× Therapeutics

+ Small size practical for synthesis and delivery

- + Effect (on regulation) can be seen quickly (in 3 wks)
- + Antisense RNA, alternate to knock-outs

CHALLENGES - MEASUREMENT

- Limited sample volumes, low recovery, interference (e.g. anti-coagulants, platelet activation)
- Pre-processing steps, pre-analytic and analytic variables
- Lack of standardized protocols for extraction, profiling, and analyses
- Lack of good, universal control (house keeping miRNA) for normalization
- x Diurnal variation and effect of fasting/non-fasting

CHALLENGES - INFERENCES

- **x** Study population and sample differences
- Confounding/effect modification
 + lifestyle, sex (infant), race, age
- **×** Time dependent (disease course) changes
- Target (gene) identification functional validation
 + Complex relationships
 - + Loops

CHALLENGES: THERAPEUTIC APPLICATIONS

- × miRNA mimics are unstable,
- Selective targeting may be difficult, broad systemic effects
- Maintaining physiological levels of therapeutic miRNAs: over-inhibition or over-expression
- × Delivery systems

CURRENT AREAS OF WORK

Integration with other –omics (e.g. genomics, metabolomics, proteomics)

* Placenta-specific miRNAs in urine

 Histo-pathologic and/or imaging correlates of miRNA expression

ACKNOWLEDGMENTS

UW

- David Siscovick
- Colin Pritchard
- Luke Wander
- Tim Thornton

Naya Frederick

- Tanya Sorenson
- * Dejene Abetew

- Michelle Williams
- Mahlet Tadesse
- Eric Rimm
- Andrea Baccarelli

- David Willoughby
- Kumaravel
 Chidambaram

EXIQON

- Lei He
- Peter Bartolomeo
- George Campbell

University of East Anglia

Aedin Cassidy

- Peter Curtis
- Sarah Edwards

danenq@uw.edu