MATERNAL-FETAL EXCHANGE: PLACENTA AS EMISSARY

Hilary S. Gammill, MD March 24, 2016

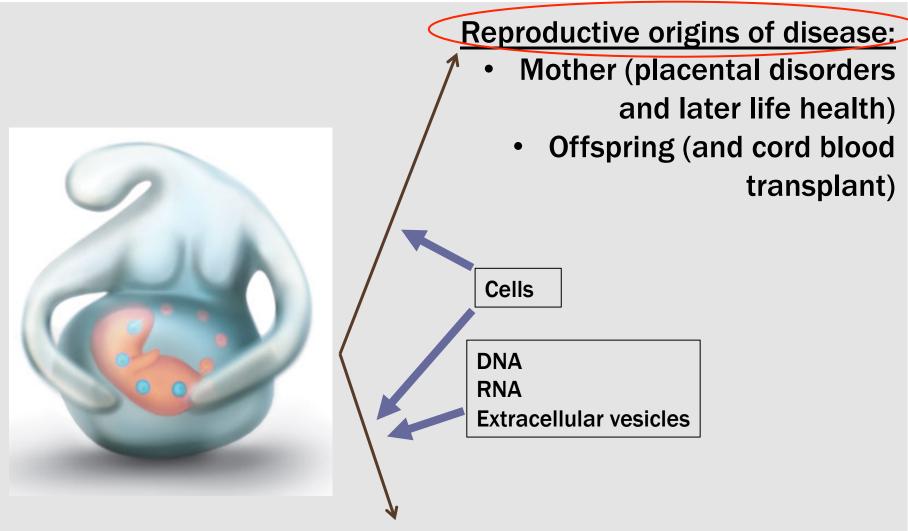
FRED HUTCH

Research funding from Faraday Pharmaceuticals (sulfide metabolism in preeclampsia)

PLACENTA AS BARRIER

From Williams classic OB text, 1907: "The foetal blood in the vessels of the chorionic villi at no time gains access to the maternal blood in the intervillous spaces..."

PLACENTA AS EMISSARY


Maternal-Fetal Exchange:

• DNA

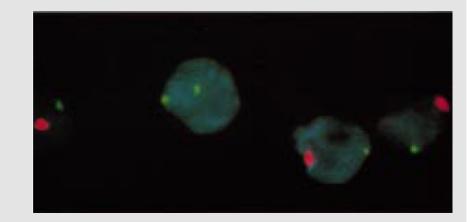
• RNA

- Extracellular vesicles
- Cells

Nelson, Scientific American, 2008

Immediate reflection of obstetric condition:

- Fetal/placental genetics
 - Placental function
- Adverse pregnancy outcomes


CELLULAR MICROCHIMERISM

Bidirectional maternal-fetal transfer Long-term persistence

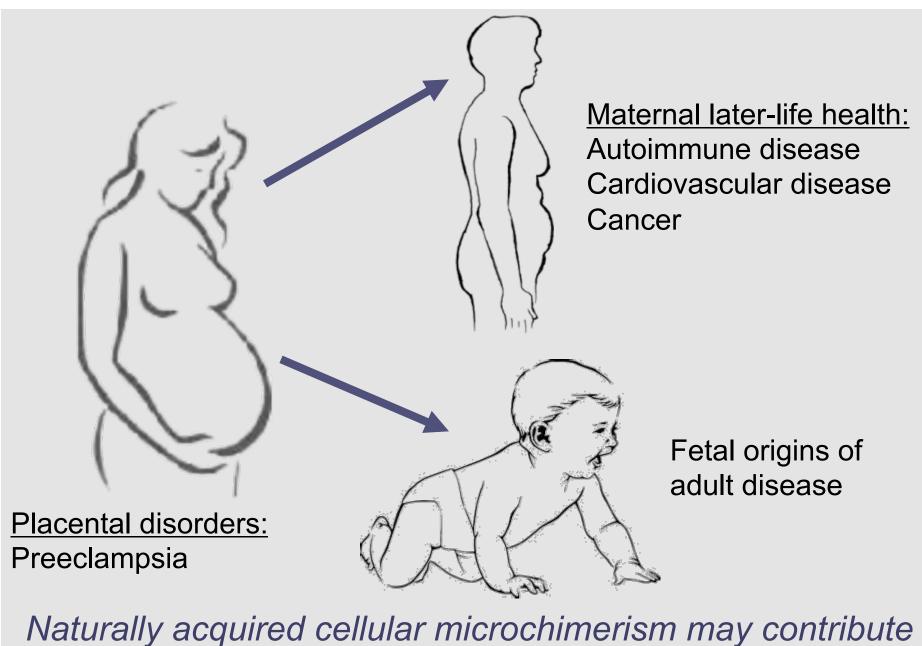
Fetal

<u>Maternal</u>

	Clinical history				
Patient	No. of pregnancies	Male infants	Female infants	Tab/Sab	Interval between sampling and most recent male
1	4	3	1	0	1 year
2	3	1	2	0	7 years
3	2	2	0	0	2 years
4	3	2	1	0	3 years
5	10	6	3	1	27 years
6	3	2	0	1	6 years
7	4	2	1	1	10 months
8	1	1	0	0	6 months

Bianchi, PNAS, 1996

Maloney, JCI, 1999


MICROCHIMERISM: CELL AND TISSUE TYPES

Organ	Presumed cell type	Maternal origin Mc	Fetal origin Mc
Brain	Neurons(murine)		Х
Lymph node	Hematopoietic cells		х
Thyroid	Epithelial cells, thyrocytes		Х
Blood	T cells, B cells, monocytes/ macrophages, NK cells, granulocytes	x	x
Blood	Lymphoid progenitor cells		Х
Heart	Cardiac myocytes	Х	Х
Skin	Endothelial cells		Х
Skin	Keratinocytes	Х	
Spleen	Hematopoietic cells		Х
Kidney	Renal tubular cells	Х	
Pancreas	Islet beta cells	Х	
Liver	Hepatocytes	Х	Х
Gallbladder	Epithelial cells		Х
Intestine	Epithelial cells		Х
Cervix	Epithelial cells		Х

CELLULAR MICROCHIMERISM

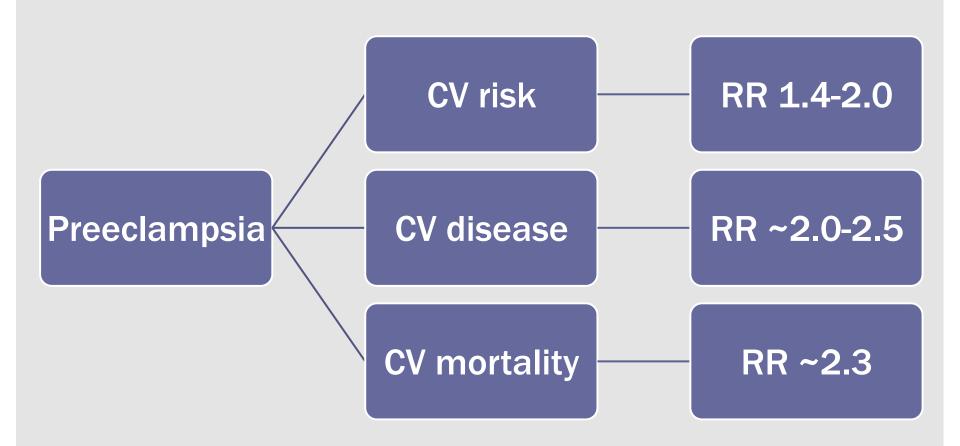
Cells exchanged during pregnancy can lead to persistent microchimerism:

- Among healthy adults,
 - 78% had detectable fetal microchimerism
 - 39% had detectable maternal microchimerism

to reproductive origins of disease

FETAL CELLULAR MICROCHIMERISM IN NORMAL PREGNANCY

- Longitudinal study of normal pregnancies:
 - 7/35 (20%) of women had detectable fetal microchimerism in PBMC in at least one time point
 - Detection and concentration increased with gestational age and was highest around delivery
 - Fetal microchimerism was detectable in CD4+ and CD8+ cell subsets in ~10%


FETAL CELLULAR MICROCHIMERISM IN PREECLAMPSIA

- 17/53 (32%) samples positive in preeclampsia
- 6/57 (10.5%) samples positive in normotensive pregnancies
- p=0.007

Concentration of Cellular Fetal Microchimerism Among Subjects With Preeclampsia and Subjects With Normal Pregnancy

	Detection Rate P Val	, ,
Group	Unadjusted	Adjusted*
Normal pregnancy, n=47 subjects (57 samples)		
Preeclampsia, n=46 subjects (53 samples)	17.4 (2.7–110.4; <i>P</i> =0.002)	15.8 (3.2–77.8; <i>P</i> <0.001)

PREECLAMPSIA IS ASSOCIATED WITH LATER CARDIOVASCULAR DISEASE

Bellamy, BMJ, 2007; Fraser, Circulation, 2012; McDonald, Am J Heart, 2008; Smith, Lancet, 2001

DIRECT RELATIONSHIP: FETAL CELLULAR MICROCHIMERISM AND CV DISEASE

- Danish cohort of women enrolled between ages 50-64 (secondary analysis, case cohort study of cancer)
- Male microchimerism studied at time of enrollment
- Subsequent development of disease considered

Male microchimerism negative (n = 82)	Male microchimerism positive (n = 190)	Crude OR (95% CI)
74 (32.2)	156 (67.8)	1 (ref.)
8 (19.1)	34 (81.0)	2.0 (0.9–4.6)

Kamper-Jorgensen, Chimerism, 2012

PREECLAMPSIA IS INVERSELY ASSOCIATED WITH BREAST CANCER RISK

Linkage between Norwegian Medical Birth Registry and Cancer Registry

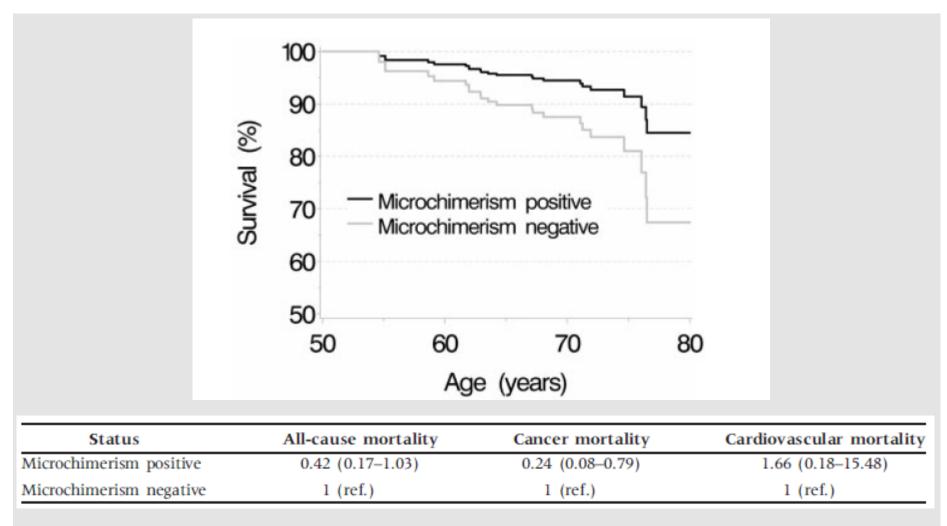
	Person-years	Cases of Breast cancer	RR (95% CI)
No PE	10,450,371	5,194	1.0
PE	663,311	280	0.81 (0.71-0.91)

- Unchanged by:
 - Length of gestation (term vs. preterm)
 - Offspring birthweight
 - Woman's age

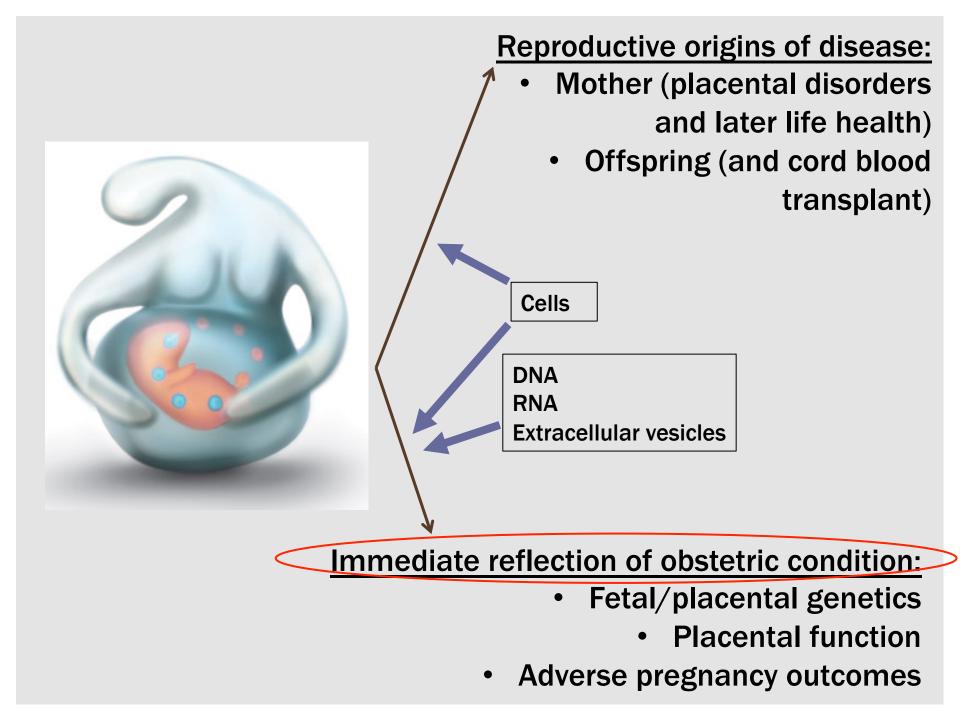
DIRECT RELATIONSHIP: MICROCHIMERISM AND BREAST CANCER PROTECTION

Cases	Blood - Stage 0-IV ¹	Blood - Stage I-III	Cancer-free breast
Controls	Blood – healthy women	Blood – matched women	Mammoplasty reduction
Prevalence Case:Control	14% : 43%	26% : 56%	26% : 63%
OR (95%-CI)	0.23 (0.06-0.75)	0.29 (0.11–0.83)	0.17 (0.04–0.76)
p-value	0.006	0.02	0.02
Comments	 Unselected breast cancer patients Some with Chemo 	Pre-menopausal (age 21-45)	

Gadi V. Cancer Res. 2007; 67:9035-8 Gadi V. PLoS One. 2008; 3:e1706 Gadi V. Breast Cancer Res Treat. 2010; 121:241-4


FETAL CELLULAR MICROCHIMERISM AND PROTECTION FROM BREAST CANCER

Danish Diet, Cancer, and Health Cohort


Microchimerism preceding disease onset

	Breast cancer $(n = 89)$	Cancer-free ($n = 272$)		
Detection of microchimerism (n, column %)				
No	53 (59.6)	82 (30.1)		
Yes	36 (40.4)	190 (69.9)		
Odds ratio (95% confidence interval (CI))				
Adjusted	0.30 (0.17-0.52)	1 (Ref.)		

OVERALL SURVIVAL: BOTH RISK AND PROTECTION

Kamper-Jorgensen, International Journal of Epidemiology, 2014

COLLABORATIVE STUDIES: FETAL/ PLACENTAL GENETICS

Rapid evolution of the field of noninvasive prenatal testing (NIPT)

COLLABORATIVE STUDIES: FETAL/ PLACENTAL GENETICS

Breadth

RESEARCH ARTICLE

GENOMICS

Noninvasive Whole-Genome Sequencing of a Human Fetus

Jacob O. Kitzman,¹* Matthew W. Snyder,¹ Mario Ventura,^{1,2} Alexandra P. Lewis,¹ Ruolan Qiu,¹ LaVone E. Simmons,³ Hilary S. Gammill,^{3,4} Craig E. Rubens,^{5,6} Donna A. Santillan,⁷ Jeffrey C. Murray,⁸ Holly K. Tabor,^{5,9} Michael J. Bamshad,^{1,5} Evan E. Eichler,^{1,10} Jay Shendure¹*

www.ScienceTranslationalMedicine.org 6 June 2012 Vol 4 Issue 137 137ra76

Refinement

BRIEF REPORT

Copy-Number Variation and False Positive Prenatal Aneuploidy Screening Results

Matthew W. Snyder, M.S., LaVone E. Simmons, M.D., Jacob O. Kitzman, Ph.D., Bradley P. Coe, Ph.D., Jessica M. Henson, B.S., Riza M. Daza, B.S., Evan E. Eichler, Ph.D., Jay Shendure, M.D., Ph.D., and Hilary S. Gammill, M.D.

N ENGLJ MED 372;17 NEJM.ORG APRIL 23, 2015

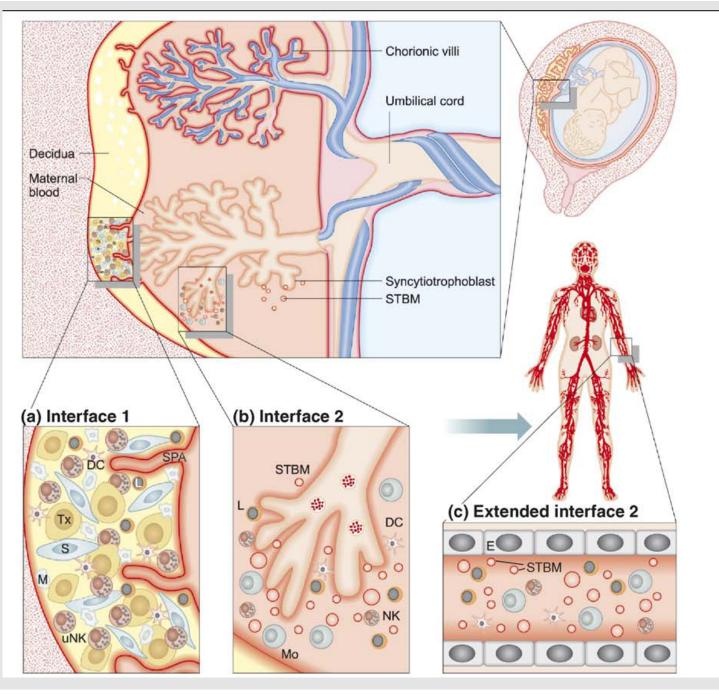
FUTURE COLLABORATIVE STUDIES

Several UW departments

Human Placenta Project proposal, aiming to:

- Isolate and evaluate placental-derived cells, subcellular particles, and cell-free nucleic acids to assess placental function
 - Normal pregnancy
 - Preeclampsia

PLACENTA AS EMISSARY


Maternal-Fetal Exchange:

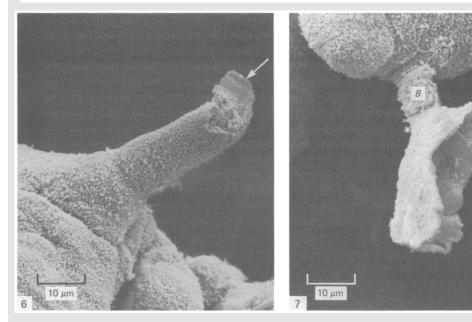
• DNA

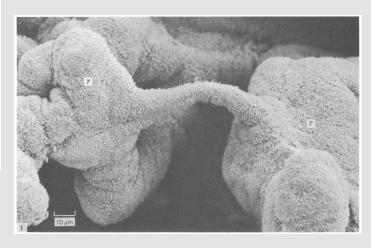
• RNA

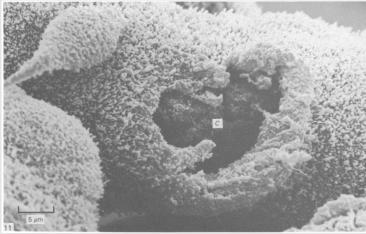
- Extracellular vesicles
- Cells

Nelson, Scientific American, 2008

Sargent 2006


SYNCYTIAL TRANSFER


J. Anat. (1986), 147, pp. 245–254 With 11 figures Printed in Great Britain


Scanning electron microscopy of intervillous connections in the mature human placenta

G. J. BURTON

Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY

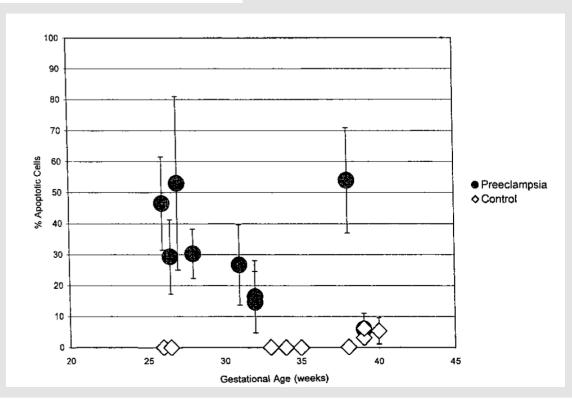
SYNCYTIAL "SECRETION"

Review: Does size matter? Placental debris and the pathophysiology of pre-eclampsia

C.W.G. Redman, D.S. Tannetta, R.A. Dragovic, C. Gardiner, J.H. Southcombe, G.P. Collett, I.L. Sargent*

Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK

Placenta 33, Supplement A, Trophoblast Research, Vol. 26 (2012) S48–S54



EXTRAVILLOUS CYTOTROPHOBLAST INVASION

Preeclampsia Is Associated with Widespread Apoptosis of Placental Cytotrophoblasts within the Uterine Wall Elaine DiFederico,* Olga Genbacev,† and Susan J. Fisher*†\$

From the Departments of Obstetrics, Gynecology, and Reproductive Sciences,* Stomatology,[†] Pharmaceutical Chemistry,[‡] and Anatomy,[§] University of California San Francisco, San Francisco, California

American Journal of Pathology, Vol. 155, No. 1, July 1999

CONCLUSIONS

- Maternal-fetal transplacental exchange includes cells, subcellular fragments, and cell-free nucleic acids
- Long-term persistence of exchanged cells may influence post-reproductive health
- Placental-derived material may provide a window into pregnancy status
- Many questions remain regarding the mechanism and nature of transplacental exchange

W UNIVERSITY of WASHINGTON

ACKNOWLEDGEMENTS

J. Lee Nelson, MD James Roberts, MD V.K. Gadi, MD, PhD Katherine A. Guthrie, PhD Kim Ma, MD Kristina Adams Waldorf, MD Swati Shree, MD Coline Gentil, MS Sami Kanaan, PhD Judy Allen, MPH Alisa Clein David Eschenbach, MD and the UW Department of Ob/Gyn, **Division of MFM**

Jay A. Shendure, MD, PhD Matthew W. Snyder, PhD

NICHD WRHR HD01264 NICHD K08HD067221 Preeclampsia Foundation

QUESTIONS?